New life for electronic waste thanks to the circular economy

This virtuous example of circular economy is the result of the Horizon2020 FENIX project in which the Politecnico di Milano is a partner.

 

Like a phoenix rising out of its own ashes, the FENIX project has achieved its aim of giving new life to electronic waste, turning it into raw materials for eco-compatible products such as new metal filament for 3D printing, eco-friendly metal powders for additive manufacturing and sustainable 3D-printed jewellery.

The Horizon 2020 FENIX Project, in which the Politecnico di Milano is a partner, has drawn to a close after 40 months of work and achievement of its objective to develop new business models and industrial strategies with a view to a circular economy.

The Industry 4.0 Laboratory of the Department of Management, Economics and Industrial Engineering at the Politecnico di Milano has in fact implemented an automated station for the disassembly of mobile phone circuit boards by collaborative-robots (cobots), one of the most advanced automation solutions in robotics technology, as they guarantee operational flexibility while permitting interaction with their surroundings and with the operators who share their tasks.

Thanks to a semiautomatic process, the cobot manages to unsolder the electronic components of the circuit board while preserving their chemical characteristics: it uses a jet of hot air to melt the solder holding together the components so that these can then be detached and processed separately from the board.

Thanks to the circular supply chain set up by the consortium participating in the project, the circuit boards disassembled by the Politecnico di Milano are processed by the University of Aquila, which recovers pure materials (such as copper, tin, gold, silver and platinum) from the boards and their electronic components. Copper and tin are then transformed into metal powders (by MBN Nanomaterialia SpA in Treviso) and filaments suitable for 3D printing (jointly by MBN Nanomaterialia SpA and I3DU and 3DHUB in Athens, Greece), both then tested at the Fundació CIM in Barcelona, Spain. Whereas the precious metals are used by I3DU and 3DHUB in Athens, Greece to create eco-compatible jewellery. Produced and sold through the consortium, these jewels can also be personalised with a 3D scanner service and given the shape of objects or people’s faces.

The hope is that when the project ends, the business models conceived and tested by FENIX will be replicable by other external parties, with a view to promoting the setting up of new circular supply chains.

Also worthy of note is that two of the results developed by the Politecnico di Milano team involved in the FENIX project have been cited by the EU Innovation radar and that an article written by the team received recognition from the publishers Taylor & Francis and appears on the website of the International Journal of Production Research as top cited article. Click here to read the article.

Source: https://www.polimi.it/pressroom/comunicatistampa/

For more info about the project: http://www.fenix-project.eu/
Link to the Youtube video: https://www.youtube.com/channel/UCEg3DZSWyo62lSaMg7xxZrg

The challenge of circularity in extended supply chains

Awareness around the environmental impact of products and processes and moving towards the sustainable use of natural resources is increasing in Europe. As such, the circular economy paradigm is obtaining even more success.

Based on this, the H2020 FENIX project, of which the Politecnico di Milano is a partner, aims to develop a new set of business models and industrial strategies with a view to facilitating circular products and services.

Three pilot plants will be established thanks to the development of sustainable processes for the combined treatment of different types of e-waste (e.g. printed circuit boards):

1) A modular, multi-material, reconfigurable pilot plant producing metallic powders for additive manufacturing processes
2) A modular, multi-material, reconfigurable pilot plant producing 3D printed gems
3) A modular, multi-material, reconfigurable pilot plant producing advanced filaments for 3D printing processes

The three pilot plants will be designed in such a way as to exploit Industry 4.0 solutions (e.g. smart sensors) which are able to send online data in real time through dedicated websites developed by FENIX.

The result of this is that production capacity will be shareable amongst the different actors involved in very different supply chains, by encouraging the involvement of end users (both private users and companies) in industrial processes and offering new services to companies for monitoring and controlling industrial plants.

The scientific role of the Department of Management, Economics and Industrial Engineering takes many forms. Firstly, the identification of new circular business models able to make use of pilot plants developed in FENIX. Secondly, the assessment of how Industry 4.0 technologies could support circular processes, specifically those related to the disassembly of Printed Circuit Boards (PCB). Finally, the Department is responsible for the dissemination and communication of the FENIX project and the management of Intellectual Property Rights (IPR) strategies.

One of the initiatives promoted by the Department related with FENIX involves collecting obsolete mobiles/smartphones. The mobile phones will be disassembled by the Industry 4.0 Lab in order to facilitate the recovery of valuable materials from electronic components through eco-friendly chemical processes. These materials, once transformed into metal powders, will be reused in additive manufacturing processes.

FENIX is also promoting a set of success stories related to the adoption of circular practices in different industrial sectors. The goal is to use real-world examples to demonstrate that the adoption of circular economy principles will allow for the creation of more sustainable supply chains by improving quality, market value and the alternative exploitation of secondary materials.

Finally, FENIX aims to integrate Key Enabling Technologies (KETs) for the efficient recovery of secondary resources within the same industrial plant. FENIX will consider three types of KETs:
1) Advanced production systems: a wide number of sensors will be embedded in each module that makes up the FENIX pilot plant.
2) Industrial bio-technologies: since the initial stages, FENIX has taken into account the use of biometallurgy for the sustainable recovery of materials from different types of waste.
3) Nanotechnologies: this type of materials technology allows for an improvement ofmaterials’ mechanical properties, thermal and electrical conductivity and overall functional properties.

FENIX (Future business models for the Efficient recovery of Natural and Industrial secondary resources in eXtended supply chain contexts)